首页 | 本学科首页   官方微博 | 高级检索  
     


The importance of microhabitat in thermoregulation and thermal conductance in two namib rodents—a crevice dweller, Aethomys namaquensis, and a burrow dweller, Gerbillurus paeba
Authors:Rochelle Buffenstein
Affiliation:

Department of Zoology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa

Abstract:

1. 1.|Thermoregulatory measurements of two Nambi rodents; Gerbillurus paeba, a burrow dweller, and Aethomys namaquensis, a crevice dweller were compared. Both were similar to other small arid-adapted rodents in that basal metabolic rates were reduced, thermoneutral zones narrow and evaporative water losses low. Rates of conductance and thermal lability, however, at ambient temperatures (Ta) below thermoneutral zone, were significantly different (P 0.01).

2. 2.|The rock rat A. namaquensis, living in a microclimate characterized by a large diel range and low humidities, compensates for a reduced basal metabolic rate by having a low rate of conductance. In this way it maintains precise thermoregulatory control. G. paeba, on the other hand, living in a thermally-stable milieu, does not control body temperature precisely. This animal instead utilizes a high rate of conductance to remove metabolic heat produced within the body. This would be advantageous to an animal living in a plugged burrow where the high humidities encountered impede the rate of evaporative cooling.

3. 3.|The energetic responses of both species, above the thermoneutral zone, appear to reflect very closely the environmental conditions which occur in the microhabitat that they rest in during the day. G. paeba shows less tolerance to temperature fluctuations than A. namaquensis, but shows more marked increases in short-term cooling mechanisms at high Tas.

4. 4.|Despite the increased use of evaporative cooling through salivation and panting in addition to pulmocutaneous evaporation, exposure to Tas above 38°C is rapidly lethal to G. paeba.

Author Keywords: Thermoregulation; thermal conductance; metabolic rate; evaporative water loss; crevice dweller; burrow dweller; Aethomys namaquensis; Gerbillurus paeba; Namib; desert

Keywords:Thermoregulation   thermal conductance   metabolic rate   evaporative water loss   crevice dweller   burrow dweller   Aethomys namaquensis   Gerbillurus paeba   Namib   desert
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号