首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of pH on the phase transition temperature of dipalmitoylphosphatidylcholine-palmitic acid liposomes
Authors:M S Fernández  M T González-Martínez  E Calderón
Abstract:The shift in the gel-liquid crystal phase transition temperature (tm) of dipalmitoylphosphatidylcholine liposomes induced by incorporation of 10 mol% palmitic acid, was measured by 90 degrees light scattering at different bulk pH values. It has been found that the tm shift decreases sigmoidally from 4.7 to -0.3 degrees C as the bulk pH is raised from 5 to 11. Since it is in this range that the carboxyl group of a membrane-bound fatty acid should ionize, our results can be interpreted to mean that there is relationship between the tm shift and the degree of dissociation of palmitic acid, the uncharged fatty acid increasing tm and its conjugate, anionic form, slightly decreasing the transition temperature of dipalmitoylphosphatidylcholine liposomes. The experimental results are fitted by a modified form of the Henderson-Hasselbach equilibrium expression which takes into account the effect of the anionic fatty acid on the surface potential and hence, on the surface pH of liposomes, according to Gouy-Chapman and Boltzmann equations, respectively. Best fit between theory and experiments is found when the intrinsic interfacial pK of palmitic acid is set equal to 7.7. This high pK value can be explained as due to the effect of the lower dielectric constant of the interfacial region, as compared to bulk water, on the acid-base dissociation of the carboxyl group. The results presented here show that upon incorporation of palmitic acid, the phase transition of dipalmitoylphosphatidylcholine bilayers becomes extremely sensitive to changes of pH in the vicinity of the physiological range. This property is not shown by the pure phospholipid bilayers in the same pH range.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号