首页 | 本学科首页   官方微博 | 高级检索  
     


On the possibility of identifying human subjects using behavioural complexity analyses
Authors:Petr Kloucek  Armin von Gunten
Affiliation:1. CAMPsyN, SUPAA, Hôpital de Cery, Route de Cery, Lausanne University Hospital, CH-1008 Prilly, Lausanne, Switzerland2. SUPAA, Hôpital de Cery, Route de Cery, Lausanne University Hospital, CH-1008 Prilly, Lausanne, Switzerland
Abstract:Background: Identification of human subjects using a geometric approach to complexity analysis of behavioural data is designed to provide a basis for a more precise diagnosis leading towards personalised medicine.Methods: The approach is based on capturing behavioural time-series that can be characterized by a fractional dimension using non-invasive longer-time acquisitions of heart rate, perfusion, blood oxygenation, skin temperature, relative movement and steps frequency. The geometry based approach consists in the analysis of the area and centroid of convex hulls encapsulating the behavioural data represented in Euclidian index spaces based on the scaling properties of the self-similar normally distributed behavioural time-series of the above mentioned quantities.Results: An example demonstrating the presented approach of behavioural fingerprinting is provided using sensory data of eight healthy human subjects based on approximately fifteen hours of data acquisition. Our results show that healthy subjects can be factorized to different similarity groups based on a particular choice of a convex hull in the corresponding Euclidian space. One of the results indicates that healthy subjects share only a small part of the convex hull pertaining to a highly trained individual from the geometric comparison point of view. Similarly, the presented pair-wise individual geometric similarity measure indicates large differences among the subjects suggesting the possibility of neuro-fingerprinting.Conclusions: Recently introduced multi-channel body-attached sensors provide a possibility to acquire behavioural time-series that can be mathematically analysed to obtain various objective measures of behavioural patterns yielding behavioural diagnoses favouring personalised treatments of, e.g., neuropathologies or aging.
Keywords:behavioural complexity indexing  behavioural fingerprinting  behavioural hysteresis  non-disruptive personalized medicine  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号