首页 | 本学科首页   官方微博 | 高级检索  
     


Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses
Authors:Mitchell J. Feldmann  Hans-Peter Piepho  William C. Bridges  Steven J. Knapp
Affiliation:1. Department of Plant Sciences, University of California, Davis, California, United States of America ; 2. Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany ; 3. Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, United States of America ; Clemson University, UNITED STATES
Abstract:The development of genome-informed methods for identifying quantitative trait loci (QTL) and studying the genetic basis of quantitative variation in natural and experimental populations has been driven by advances in high-throughput genotyping. For many complex traits, the underlying genetic variation is caused by the segregation of one or more ‘large-effect’ loci, in addition to an unknown number of loci with effects below the threshold of statistical detection. The large-effect loci segregating in populations are often necessary but not sufficient for predicting quantitative phenotypes. They are, nevertheless, important enough to warrant deeper study and direct modelling in genomic prediction problems. We explored the accuracy of statistical methods for estimating the fraction of marker-associated genetic variance (p) and heritability (HM2) for large-effect loci underlying complex phenotypes. We found that commonly used statistical methods overestimate p and HM2. The source of the upward bias was traced to inequalities between the expected values of variance components in the numerators and denominators of these parameters. Algebraic solutions for bias-correcting estimates of p and HM2 were found that only depend on the degrees of freedom and are constant for a given study design. We discovered that average semivariance methods, which have heretofore not been used in complex trait analyses, yielded unbiased estimates of p and HM2, in addition to best linear unbiased predictors of the additive and dominance effects of the underlying loci. The cryptic bias problem described here is unrelated to selection bias, although both cause the overestimation of p and HM2. The solutions we described are predicted to more accurately describe the contributions of large-effect loci to the genetic variation underlying complex traits of medical, biological, and agricultural importance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号