首页 | 本学科首页   官方微博 | 高级检索  
     


Glutathione and citric acid modulates lead- and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L.
Authors:Abhay Kumar  Lalita Pal  Veena Agrawal
Affiliation:1.Department of Botany,University of Delhi,Delhi,India
Abstract:This study was conducted through the pot experiments to understand the mechanism of lead (Pb) and arsenic (As)-induced phytotoxicity and their possible alleviation by glutathione (GSH) and citric acid (CA) in two cultivars of Solanum lycopersicum L., i.e., Pusa ruby (PR) and Arka vikas (S22). Therefore, tomato seedlings were germinated in soil-rite supplemented with seven treatments, i.e., control, 10 µM Pb, 10 µM As, 10 µM Pb + 250 µM GSH, 10 µM As + 250 µM GSH, 10 µM Pb + 250 µM CA and 10 µM As + 250 µM CA for 7 days and examined for growth parameters, lipid peroxidation, photosynthetic pigments and antioxidative mechanism. Results of our study showed that Pb and As alone decrease seed germination, growth parameter, chlorophylls and increase anthocyanins and lipid peroxidation in both the cultivars. Pb- and As-induced oxidative stress resulted into significant changes in the plant responses that attributed by increased activity of antioxidative enzymes and non-enzymatic antioxidants. GSH and CA showed potential to alleviate Pb- or As-induced phytotoxicity and strengthen the plant antioxidative machinery and structural integrity. Cultivar PR showed better response than cv. S22. Pb and As treatment caused significant damages to the DNA molecules and structural integrity of the cv. PR roots. These findings can be useful for understanding the Pb- and As-induced phytotoxic biomarkers along with GSH- and CA-mediated alleviation mechanisms, which will provide new insight in developing better system for phytoremediation technology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号