首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanistic and stereochemical studies of a unique dehydration catalyzed by CDP-4-keto-6-deoxy-D-glucose-3-dehydrase: a pyridoxamine 5'-phosphate dependent enzyme isolated from Yersinia pseudotuberculosis.
Authors:T M Weigel  V P Miller  H W Liu
Institution:Department of Chemistry, University of Minnesota, Minneapolis 55455.
Abstract:CDP-4-keto-6-deoxy-D-glucose-3-dehydrase (E1) purified from Yersinia pseudotuberculosis is a pyridoxamine 5'-phosphate (PMP) dependent enzyme which catalyzes the C-O bond cleavage at C-3 of a CDP-4-keto-6-deoxy-D-glucose substrate, a key step in the formation of 3,6-dideoxyhexoses. Since enzyme E1 utilizes the PMP cofactor in a unique manner, it is essential to establish its role in E1 catalysis. When an incubation was conducted in 18O]H2O, incorporation of 18O into positions C-3 and C-4 of the recovered substrate was observed. This result not only provided the evidence necessary to reveal the reversibility of E1 catalysis but also lent credence to the formation of a delta 3,4-glucoseen intermediate. In view of E1 catalysis being initiated by a C-4' deprotonation of the PMP-substrate complex, the stereochemical course of this step was examined using chemically synthesized (4'S)- and (4'R)-4'-3H]PMP as probes. Our results clearly demonstrated that the stereochemistry of this deprotonation is pro-S specific, which is in agreement with the stereochemical consistency found with other vitamin B6 phosphate dependent enzymes. The fact that reprotonation at C-4' of the PMP-delta 3,4-glucoseen complex in the reverse direction of E1 catalysis was also found to be pro-S stereospecific strongly suggested that enzyme E1, like most of its counterparts, has the si face of its cofactor-substrate complex exposed to solvent and accessible to active-site catalytic groups as well.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号