首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrastructural characterization of the locomotory cytoskeletal system of the spermatozoid inGinkgo biloba
Authors:C Yang  G Li  Z -H Zhai
Institution:(1) College of Life Sciences, Peking University, 100871 Beijing, People's Republic of China
Abstract:Summary The development of the locomotory cytoskeletal system of sperm is carefully coordinated with the development of the sperm inGinkgo biloba. Here we report further ultrastructural characterization of the locomotory cytoskeletal system in the developing spermatid and mature spermatozoid, particularly with respect to the initiation and early development of the flagellar apparatus. A multilayered structure (MLS) assembles from an electron-dense matrix that self-organizes after blepharoplast breakup and then further elongates. At the tail of the assembling MLS, the spline microtubules connect to an anterior beak of the nuclear envelope. Nuclear-pore complexes are found on the nuclear envelope close to this beak. The mitochondria which elongate and line up one behind the other are tightly associated with the MLS. The MLS ofG. biloba is composed of an upper layer of parallel spline microtubules and a lower layer consisting of a fibrous lamellar strip composed of paralled fibers about 9 nm in diameter. Higher-magnification images show that the fully assembled fibers of the lamellar strip consist of subunits which suggest that protofilaments are involved in the assembly processes. A unique cytoskeletal system of the spermatozoid inG. biloba is given by the anterior bundle of microtubules. This bundle, in which microtubules are arranged parallel to each other, forms between the plasmalemma and the MLS and is about 214–392 nm in cross section. These microtubules expand spirally along the MLS band. Other details of cellular fine structure of the mature spermatozoid are described.
Keywords:Locomotory cytoskeleton  Ginkgo biloba  Spermatid  Flagellar apparatus  Multilayered structure  Microtubules
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号