Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment |
| |
Authors: | Zarter C Ryan Adams William W Ebbert Volker Adamska Iwona Jansson Stefan Demmig-Adams Barbara |
| |
Affiliation: | Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA. |
| |
Abstract: | The evergreen groundcover bearberry (Arctostaphylos uva-ursi [L.] Sprengel) was characterized over two successive years (2002-2004) from both sun-exposed and shaded sites at a montane ponderosa pine and subalpine forest community of 1900- and 2800-m-high altitudes, respectively. During summer, photosynthetic capacities and pre-dawn photosystem II (PSII) efficiency were similarly high in all four populations, and in winter, only the sun-exposed and shaded populations at 2800 m exhibited complete down-regulation of photosynthetic oxygen evolution capacity and consistent sustained down-regulation of PSII efficiency. This photosynthetic down-regulation at high altitude involved a substantial decrease in PSII components [pheophytin, D1 protein, oxygen evolving complex ([OEC)], a strong up-regulation of several anti-early-light-inducible protein (Elip)- and anti-high-light-inducible protein (Hlip)-reactive bands and a warm-sustained retention of zeaxanthin and antheraxanthin (Z + A). PsbS, the protein modulating the rapid engagement and disengagement of Z +A in energy dissipation, exhibited its most pronounced winter increases in the shade at 1900 m, and thus apparently assumes a greater role in providing rapidly reversible zeaxanthin-dependent photoprotection during winter when light becomes excessive in the shaded population, which remains photosynthetically active. It is attractive to hypothesize that PsbS relatives (Elips/Hlips) may be involved in sustained zeaxanthin-dependent photoprotection under the more extreme winter conditions at 2800 m. |
| |
Keywords: | D1 protein Elip energy dissipation Hlip OEC photoinhibition photosynthesis PsbS winter stress zeaxanthin |
本文献已被 PubMed 等数据库收录! |
|