首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical modification of the glucosidase inhibitor 1-deoxynojirimycin. Structure-activity relationships.
Authors:A Tan  L van den Broek  S van Boeckel  H Ploegh  J Bolscher
Institution:The Netherlands Cancer Institute, Division of Cellular Biochemistry, Amsterdam.
Abstract:The ability of the glucosidase inhibitor 1-deoxynojirimycin (dNM) and a series of N-alkylated dNM derivatives to interfere with biosynthesis, transport, and maturation of the glycoprotein alpha 1-antitrypsin in HepG2 cells was investigated. Inhibition of endoplasmic reticulum glucosidase I and II by dNM and its derivatives resulted in an intracellular accumulation of alpha 1-antitrypsin with glucose-containing high mannose type oligosaccharides (precursor). N-alkylation of dNM increased its potency in inhibiting endoplasmic reticulum glucosidases, as determined from the concentration required for half maximal inhibition. N-Alkylated derivatives of dNM were better able to inhibit glucosidase I than glucosidase II (deduced from the number of glucose residues retained in Endo H-releasable oligosaccharides). The inhibition of glucosidase activity imposed by alkylated dNM derivatives was less easily reversed than that by dNM, an effect most pronounced for N-methyl-dNM. Branching of the alkyl group of dNM derivatives decreased the inhibitory potency. Although dNM and its derivatives interfered strongly with intracellular oligosaccharide processing, they did not completely block N-glycan maturation of alpha 1-antitrypsin even at the highest concentrations tested.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号