首页 | 本学科首页   官方微博 | 高级检索  
     


Hexose regulation of sodium-hexose transport in LLC-PK1 epithelia: The nature of the signal
Authors:A. Moran  R. J. Turner  J. S. Handler
Affiliation:(1) Physiology Department, Armed Forces Radiobiology Research Institute, 20814 Bethesda, Maryland;(2) National Heart, Lung and Blood Institute, National Institutes of Health, 20205 Bethesda, Maryland
Abstract:Summary We have shown previously that the concentration of glucose in the growth medium regulates sodium-coupled hexose transport in epithelia formed by the porcine renal cell line LLC-PK1. Assayed in physiological salt solution, the ratio of the concentration of agr-methyl glucoside (AMG) accumulated inside the cell at steady state to its concentration outside, and the number of glucose transporters, as measured by phlorizin binding, was inversely related to the glucose concentration in the growth medium. In this study, using a cloned line of LLC-PK1 cells, we provide evidence that the difference in AMG concentrating capacity is the result of a regulatory signal and not simply due to a selection process where the growth of cells with enhanced glucose transport is favored by low glucose medium or vice-versa. By adding glucose to conditioned medium (collected after 48 hr incubation with cells and therefore containing less than 0.1mm glucose), we demonstrate that the signal in the growth medium is indeed the concentration of glucose rather than another factor secreted into or depleted from the medium. Fructose and mannose, two sugars not transported by the sodium-dependent glucose transporter, can substitute for glucose as a carbohydrate source in the growth medium and have a modest glucose-like effect on the transporter. Growth in medium containing AMG does not affect the transporter, indicating that the regulatory signal is not a direct effect of the hexose on its carrier but involves hexose metabolism.
Keywords:cultured epithelia  hexose transport  transport regulation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号