High Respiratory Activity of Guard Cell Protoplasts from Vicia faba L. |
| |
Authors: | Shimazaki, Ken-ichiro Gotow, Kiyoshi Sakaki, Takeshi Kondo, Noriaki |
| |
Affiliation: | 1Division of Environmental Biology, The National Institute for Environmental Studies Yatabe, Ibaraki 305, Japan 2Department of Pure and Applied Sciences, College of General Education, University of Tokyo Tokyo 153, Japan |
| |
Abstract: | The rate of O2 uptake was about 29 times higher in guard cellprotoplasts (GCPs) than in mesophyll protoplasts (MGPs) on aChi basis. The O2 uptake was inhibited by respiratory inhibitors,but stimulated by respiratory uncouplers. On a Chi basis, theactivities of Cyt c oxidase and NADH-Cyt c reductase, mitochondrialenzymes, were about 27 and 35 times higher in GCPs than in MCPs.On a Chi basis, the ATP content was about 9 times higher inGCPs. The amount of ATP in GCPs was decreased by respiratoryinhibitors, an energy transfer inhibitor, and uncouplers ofoxidative phosphorylation. On a volume basis, GCPs had 8- to10-fold higher respiratory activities than MCPs, but had a lowChi content and lacked the activity of NADP-glyceraldehyde-3-phosphatedehydrogenase (NADP-GAPD), the Calvin cycle enzyme. From theseresults, we concluded that oxidative phosphorylation plays amain role in ATP production in guard cells and that guard cellshave a heterotrophic feature. Salicylhydroxamic acid (SHAM)in combination with KCN or NaN3 strongly inhibited O2 uptake,indicating the presence of cyanide-resistant respiration inguard cells. Phenylmercuric acetate (PMA), a potent inhibitorof stomatal opening, reduced the ATP content of GCPs by about90%, whereas it had a relatively small effect on the ATP levelof MCPs. The specific effect of PMA on GCPs is discussed. (Received March 24, 1983; Accepted June 8, 1983) |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|