首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering molecular recognition of endoxylanase enzymes and their inhibitors through phage display
Authors:Beliën Tim  Van Campenhout Steven  Vanden Bosch An  Bourgois Tine M  Rombouts Sigrid  Robben Johan  Courtin Christophe M  Delcour Jan A  Volckaert Guido
Institution:Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium. tim.belien@biw.kuleuven.be
Abstract:Specific binding of interacting proteins generally depends on a limited set of amino acid residues located at the contact interface. We have applied a phage-display-based screening method to simultaneously evaluate the role of multiple residues of endo-beta-1,4-xylanase enzymes in conferring binding specificity towards two different endoxylanase inhibitors. Seven residues of the two beta-strand 'thumb' region of Trichoderma longibrachiatum endo-beta-1,4-xylanase XynII were targeted for randomization. The generated combinatorial library representing 62,208 site-directed variants was displayed on the surface of filamentous phage and selected against xylanase inhibitor protein (XIP) and Triticum aestivum xylanase inhibitor (TAXI). DNA sequence analysis of phagemid panning isolates provided information on the occurrence of particular amino acids at distinct positions. In particular, residues at positions 124 (Asn) and 131 (Thr) were found to be critical for specific inhibitor binding. These residue predictions derived from the combinatorial exploration of the thumb region and accompanying sequence analyses were experimentally confirmed by testing the inhibitor sensitivity of a limited set of recombinantly expressed XynII mutants. In addition, we successfully altered the inhibition susceptibility of the bacterial Bacillus subtilis endoxylanase XynA from XIP-insensitive to XIP-sensitive.
Keywords:combinatorial library  phage display  endoxylanase  inhibition specificity
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号