Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting |
| |
Authors: | K Beier A V?lkl T Hashimoto H D Fahimi |
| |
Affiliation: | Department of Anatomy and Cell Biology, University of Heidelberg/Federal Republic of Germany. |
| |
Abstract: | Quantitative immunoelectron microscopy in conjunction with quantitative analysis of immunoblots have been used to study the effects of bezafibrate (BF), a peroxisome-proliferating hypolipidemic drug, upon six different enzyme proteins in rat liver peroxisomes (Po). Antibodies against following peroxisomal enzymes: catalase, urate oxidase, alpha-hydroxy acid oxidase, acyl-CoA oxidase, bifunctional enzyme (hydratase-dehydrogenase) and thiolase, were raised in rabbits, and their monospecificities were confirmed by immunoblotting. Female Sprague-Dawley rats were treated for 7 days with 250 mg/kg/day bezafibrate and liver sections were incubated with the appropriate antibodies followed by the protein A-gold complex. The labeling density for each enzyme was estimated by automatic image analysis. In parallel experiments immunoblots prepared from highly purified peroxisome fractions of normal and BF-treated rats were incubated with the same antibodies. The antigens were visualized by an improved protein A-gold method including an anti-protein A step and silver amplification. The immunoblots were also quantitated by an image analyzer. The results revealed a selective induction of beta-oxidation enzymes by bezafibrate with thiolase showing the most increase followed by bifunctional protein and acyl-CoA oxidase. The labeling density for catalase and alpha-hydroxy acid oxidase was reduced, confirming fully the quantitative analysis of immunoblots which in addition revealed reduction of uricase. These observations demonstrate that hypolipidemic drugs induce selectively the beta-oxidation enzymes while other peroxisomal enzymes are reduced. The quantitative immunoelectron microscopy with automatic image analysis provides a versatile, highly sensitive and efficient method for rapid detection of modulations of individual proteins in peroxisomes. |
| |
Keywords: | |
|
|