Abstract: | The effect of different divalent metal ions on the hydrolysis of DNA by DNase I was studied with an assay which distinguishes between cleavage of one or both strands of the DNA substrate during initial encounters between enzyme and DNA. Using covalently closed superhelical SV40(I) DNA as substrate, initial reaction products consisting of relaxed circles or unit-length linears are resolved by electrophoresis of radioactively labeled DNA in agarose gels. Only in the presence of a transition metal ion, such as Mn2+ or Co2+, and only under certain reaction conditions, is DNase I able to cut both DNA strands at or near the same point, generating unit-length linears. This ability to cut both DNA strands is inhibited by such factors as temperature decrease, the addition of a monovalent ion or another divalent cation which is not a transition metal ion, or a reduction in the number of superhelical turns in the DNA substrate. All of these factors lead to a winding of the duplex helix and antagonize the unwinding of the duplex promoted by transition metal ion binding. Transition metal ions may thus convert the DNA substrate locally to a form in which DNase I can introduce breaks into both strands. In the presence of Mg2+, DNase I introduces single strand nicks into SV40(I), generating exclusively the covalently open, relaxed circular SV40(II) as the initial product of the reaction. In the presence of Mn2+, DNase I generates as initial products a mixture of SV40(II) and unit-length SV40 linear DNA molecules, formed by two nicks in opposite strands at or near the same point in the duplex. These circular SV40(II) molecules consist of two types. A minority class is indistinguishable from the nicked SV40(II) produced by DNase I in the presence of Mg2+. The majority class consists of molecules containing a gap in one of the two strands, the mean length of the gap being 11 nucleotides. The SV40(L) molecules produced in the presence of Mn2+ appear to have single strand extensions at one or both ends. |