首页 | 本学科首页   官方微博 | 高级检索  
     


Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system
Authors:Hesham A. El Enshasy  Elsayed Ahmed Elsayed  Noorhamizah Suhaimi  Roslinda Abd Malek  Mona Esawy
Affiliation:1.Institute of Bioproduct Development (IBD),Universiti Teknologi Malaysia (UTM),Skudai,Malaysia;2.City of Scientific Research and Technology Application,Alexandria,Egypt;3.Bioproducts Research Chair, Zoology Department, Faculty of Science,King Saud University,Riyadh,Kingdom of Saudi Arabia;4.Chemistry of Natural and Microbial Products Department,National Research Centre,Cairo,Egypt
Abstract:

Background

Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

Results

The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

Conclusions

Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号