首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Ku‐dependent non‐homologous end‐joining pathway contributes to low‐dose radiation‐stimulated cell survival
Authors:Xiaoyan Yu  Hongyan Wang  Ping Wang  Benjamin PC Chen  Ya Wang
Institution:1. Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia;2. Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China;3. Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
Abstract:Low‐dose (≤0.1 Gy) radiation‐induced adaptive responses could protect cells from high‐challenge dose radiation‐induced killing. The protective role is believed to promote the repair of DNA double‐strand breaks (DSBs) that are a severe threat to cell survival. However, it remains unclear which repair pathway, homologous recombination repair (HRR) or non‐homologous end‐joining (NHEJ), is promoted by low‐dose radiation. To address this question, we examined the effects of low‐dose (0.1 Gy) on high‐challenge dose (2–4 Gy) induced killing in NHEJ‐ or HRR‐deficient cell lines. We showed that 0.1 Gy reduced the high‐dose radiation‐induced killing for wild‐type or HRR‐deficient cells, but enhanced the killing for NHEJ‐deficient cells. Interestingly, low‐dose radiation also enhanced the killing for wild‐type cells exposed to high‐challenge dose radiation with high‐linear energy transfer (LET). Because it is known that high‐LET radiation induces an inefficient NHEJ, these results support that the low‐dose radiation‐stimulated protective role in reducing high‐challenge dose (low‐LET)‐induced cell killing might depend on NHEJ. In addition, we showed that low‐dose radiation activated the DNA‐PK catalytic subunit (DNA‐PKcs) and the inhibitor of DNA‐PKcs destroyed the low‐dose radiation‐induced protective role. These results suggest that low‐dose radiation might promote NHEJ through the stimulation of DNA‐PKcs activity and; therefore, increase the resistance of cells to high‐challenge dose radiation‐induced killing. J. Cell. Physiol. 226: 369–374, 2011. © 2010 Wiley‐Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号