首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Disruption of shape complementarity in the ribosomal protein L1–RNA contact region does not hinder specific recognition of the RNA target site
Authors:Olga Kostareva  Svetlana Tishchenko  Ekaterina Nikonova  Vladislav Kljashtorny  Natalia Nevskaya  Alexei Nikulin  Anna Sycheva  Sergei Moshkovskii  Wolfgang Piendl  Maria Garber  Stanislav Nikonov
Institution:1. Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Moscow, Russia;2. Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz‐Pregl‐Str. 3, Innsbruck 6020, Austria;3. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
Abstract:The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein?RNA affinity. The threonine residue in the universally conserved triad Thr?Met?Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1?23S rRNA complexes are less stable compared to the wild type complexes. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:binding kinetics  surface plasmon resonance (SPR)  RNA−  protein recognition  crystal structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号