首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pleural pressure distribution and its relationship to lung volume and interstitial pressure
Authors:S J Lai-Fook  J R Rodarte
Institution:Biomedical Engineering Center, University of Kentucky, Lexington 40506.
Abstract:The mechanics of the pleural space has long been controversial. We summarize recent research pertaining to pleural mechanics within the following conceptual framework, which is still not universally accepted. Pleural pressure, the force acting to inflate the lung within the thorax, is generated by the opposing elastic recoils of the lung and chest wall and the forces generated by respiratory muscles. The spatial variation of pleural pressure is a result of complex force interactions among the lung and other structures that make up the thorax. Gravity contributes one of the forces that act on these structures, and regional lung expansion and pleural pressure distribution change with changes in body orientation. Forces are transmitted directly between the chest wall and the lung through a very thin but continuous pleural liquid space. The pressure in pleural liquid equals the pressure acting to expand the lung. Pleural liquid is not in hydrostatic equilibrium, and viscous flow of pleural liquid is driven by the combined effect of the gravitational force acting on the liquid and the pressure distribution imposed by the surrounding structures. The dynamics of pleural liquid are considered an integral part of a continual microvascular filtration into the pleural space. Similar concepts apply to the pulmonary interstitium. Regional differences in lung volume expansion also result in regional differences in interstitial pressure within the lung parenchyma and thus affect regional lung fluid filtration.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号