首页 | 本学科首页   官方微博 | 高级检索  
     


Methylated messenger RNA in mouse kidney.
Authors:A J Ouellette  D Frederick  R A Malt
Abstract:Polyadenylated messenger RNA from mouse kidney labeled in vivo exhibited a pattern of methylation distinct from that of rRNA and tRNA. After mice were given L-[methyl-3H]methionine, 4% of the polyribosomal RNA label was bound to oligo (dT)-cellulose; 20-24% of orotate- or adenine-labeled polyribosomal RNA eluted in the poly(A)+ RNA fraction under similar conditions. [3H]Methyl radioactivity was not incorporated into low molecular weight (5-5.8 S) rRNA, indicating the extent of nonmethylpurine ring labeling was negligible. [3H]Methyl-labeled poly(A)+ RNA sedimented heterogeneously in sodium dodecyl sulfate containing gradients similarly to poly(A)+ mRNA labeled with [3H]orotic acid. Based on an average molecular length of 2970 nucleotides, renal mRNA was estimated to contain 8.6 methyl moieties per molecule. Analysis of alkaline-hydrolyzed RNA sampled by DEAE-Sephadex-urea chromatography provided estimates of the relative amounts of base and ribose methylation. Although 83% of the [3H]methyl radioactivity in rRNA was in the 2'-0-methylnucleotide fraction, no methylated dinucleotides were found in mRNA. In poly(A)+ mRNA 60% of the [3H]methyl label was in the mononucleotide fraction; the remainder eluted between the trinucleotide and tetranucleotide markers and had a net negative charge between -4 and -5. The larger structure, not yet charcterized, could result from two or three consecutive 2'-0-ribose methylations and is estimated to contain 2.6 methyl residues. Alternatively, the oligonucleotide could be a 5'-terminal methylated nucleotide species containing 5'-phosphate(s) in addition to the 3'-phosphate moiety resulting from alkaline hydrolysis. Either structure could have a role in the processing or translation of mRNA in mammalian cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号