首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Correlation of Endogenous Gibberellic Acid with Initiation of Mango Shoot Growth
Authors:Thomas L Davenport  David W Pearce  Stewart B Rood
Institution:(1) Department of Biological Sciences, University of Lethbridge, Alberta, Canada;
Abstract:Stems of mango (Mangifera indica L.) rest in a nongrowing, dormant state for much of the year. Ephemeral flushes of vegetative or reproductive shoot growth are periodically evoked in apical or lateral buds of these resting stems. The initiation of shoot growth is postulated to be primarily regulated by a critical ratio of root-produced cytokinins, which accumulate in buds and by leaf-produced auxin, which decreases in synthesis and transport over time. Exogenously applied gibberellic acid (GA3) delays initiation of bud break but does not determine whether the resulting flush of growth is vegetative or reproductive. We tested the hypothesis that endogenous GA3, which influences release of these resting buds, may decrease in stem tips or leaves with increasing age of mango stems. GA3 and several other GAs in stem tip buds and leaves were identified and quantified in stems of different ages. The major endogenous GAs found in apical buds and leaves of vegetative mango stems were early 13-hydroxylation pathway gibberellins: GA1, epi-GA1, GA3, GA19, GA20, and GA29, as identified by gas chromatography-mass spectrometry (GC-MS). A novel but unidentified GA-like compound was also present. The most abundant GAs in apical stem buds were GA3 and GA19. Contrary to the hypothesis, the concentration of GA3 increased within buds with increasing age of the stems. The concentrations of other GAs in buds were variable. The concentration of GA3 did not change significantly with age in leaves, whereas that of most of the other GAs declined. GA1 levels were greatest in leaves of elongating shoots. These results are consistent with the concept that rapid shoot growth is associated with synthesis of GAs leading to GA1. The role of GA3 in delaying bud break in mango is not known, but it is proposed that it may enhance or maintain the synthesis or activity of endogenous auxin. It, thereby, maintains a high auxin/cytokinin ratio similar to responses to GA3 that maintain apical dominance in other plant species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号