首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of cobalt on the initiation of fast axonal transport
Authors:George C. Stone  Richard Hammerschlag
Affiliation:(1) Division of Neurosciences, City of Hope Research Institute, 1450 East Duarte Road, 91010 Duarte, California, USA
Abstract:Effects of Co2+ on the fast axonal transport of individual proteins were examined in vitro in bullfrog spinal/sciatic nerves.35S-methionine-labeled proteins, fast-transported in control and Co2+-treated preparations were separated via two-dimensional gel electrophoresis. While the overall amount of protein transported was reduced, no qualitative differences could be seen when gel fluorographic patterns were compared. Quantitative analyses of the 48 most abundantly transported species revealed two significantly different populations (p < 0.01) differentially sensitive to Co2+ and distinguishable to a large extent by molecular weight. Those proteins less sensitive to Co2+ ranged from ~20,000 to 35,000 daltons while those more sensitive to Co2+ were >~35,000 daltons. The finding that all proteins are affected by Co2+ supports the proposal that fast-transported proteins are subject to a common Co2+-sensitive, Ca2+-requiring step. The observed differential effects are consistent with more than one Ca2+-dependent step occurring during the initiation phase of fast transport.This research was supported by a Muscular Dystrophy Association postdoctoral fellowship to G.C.S., and by research grants from NSF (BNS 79-24125) and the National Multiple Sclerosis Society (RG 1296-A-1) to R.H.
Keywords:axonal transport  two-dimensional gel electrophoresis  calcium  intracellular transport  secretion  cobalt
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号