首页 | 本学科首页   官方微博 | 高级检索  
     


Translational and rotational joint power terms in a six degree-of-freedom model of the normal ankle complex
Authors:Frank L. Buczek   Thomas M. Kepple   Karen Lohmann Siegel  Steven J. Stanhope  
Affiliation:

* Advanced Biomechanics Incorporated, Clearwater Florida, U.S.A.

Biomechanics Laboratory, Rehabilitation Medicine Department. Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda Maryland, U.S.A.

Abstract:We hypothesized that defining joint power (JP) merely on the basis of joint rotations ignores important translational power terms, and may not adequately represent the energy flow profile for a given muscle group. A novel six degree-of-freedom (6 DOF) model of the ankle complex was implemented, accounting for previously ignored joint translations as well as traditional rotations. Foot and shank kinematic and kinetic data were collected over a stride cycle on five male and five female adults, walking five trials each at 0.69 statures s−1. During intra-subject analyses, ensemble averages were calculated (n=5) for JP associated with each DOF, and for related velocity and force/moment data. Translational joint velocities typically peaked below 10% of the mean walking velocity. The largest peak in JP occurred for the rotational DOF associated with dorsi/planter flexion (360 W). The next largest peak in JP was for the vertical translational DOF, and was nearly 10% of the predominant peak. Positive work during push-off was significantly less p≤0.05) for the 6 DOF model (27.9 J) than for either 1 or 3 DOF rotational models (30.3 and 29.9 J, respectively). Negative work during early stance was significantly less for the 6 DOF model (−10.3 J) than for either the 1 or 3 DOF models (−13.1 and −12.6 J, respectively). Inter-subject analyses (n=50) were conducted for JP data only, with similar results. We conclude that translational JP terms are of practical importance in mechanical energy studies, and may be of particular concern when evaluating energy storing prostheses, when summing total power at several joints, and when studying pathologies that disturb joint geometry.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号