Mechanism of protein folding |
| |
Authors: | Nölting B Andert K |
| |
Affiliation: | Prussian Private Institute of Technology at Berlin, Berlin, Germany. nolting@pitb.de |
| |
Abstract: | The high structural resolution of the main transition states for the formation of native structure for the six small proteins of which Phi-values for a large set of mutants have become available, barstar, barnase, chymotrypsin inhibitor 2, Arc repressor, the src SH3 domain, and a tetrameric p53 domain reveals that for the first 5 of these proteins: (1) Residues that belong to regular secondary structure have a significantly larger average fraction of native structural consolidation than residues in loops; (2) on the other hand, secondary and tertiary structures have built up to the same degree, or at least a high degree, but nonuniformly distributed over the molecule; (3) the most consolidated parts of each protein molecule in the transition state cluster together, and these clusters contain a significantly higher percentage of residues that belong to regular secondary structure than the rest of the molecule. These observations further reconcile the framework model with the nucleation-condensation mechanism for folding: The amazing speed of protein folding can be understood as caused by the catalytic effect of the formation of clusters of residues which have particularly high preferences for the early formation of regular secondary structure in the presence of significant amounts of tertiary structure interactions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|