首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extensive Reorganization of the Plastid Genome of <Emphasis Type="Italic">Trifolium subterraneum</Emphasis> (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions
Authors:Zhengqiu Cai  Mary Guisinger  Hyi-Gyung Kim  Elizabeth Ruck  John C Blazier  Vanity McMurtry  Jennifer V Kuehl  Jeffrey Boore  Robert K Jansen
Institution:(1) The University of Texas at Austin, Austin, TX 78712, USA;(2) The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;(3) DOE Joint Genome Institute, Walnut Creek, CA 94598, USA;(4) Genome Project Solutions, Hercules, CA 94547, USA;(5) Present address: Section of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
Abstract:The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous gene order changes, attributable to 14–18 inversions. All endpoints of rearranged gene clusters are flanked by repeated sequences, tRNAs, or pseudogenes. One unusual feature of the Trifolium subterraneum genome is the large number of dispersed repeats, which comprise 19.5% (ca. 28 kb) of the genome (versus about 4% for other angiosperms) and account for part of the increase in genome size. Nine genes (psbT, rbcL, clpP, rps3, rpl23, atpB, psbN, trnI-cau, and ycf3) have also been duplicated either partially or completely. rpl23 is the most highly duplicated gene, with portions of this gene duplicated six times. Comparisons of the Trifolium plastid genome with the Plant Repeat Database and searches for flanking inverted repeats suggest that the high incidence of dispersed repeats and rearrangements is not likely the result of transposition. Trifolium has 19.5 kb of unique DNA distributed among 160 fragments ranging in size from 30 to 494 bp, greatly surpassing the other five sequenced legume plastid genomes in novel DNA content. At least some of this unique DNA may represent horizontal transfer from bacterial genomes. These unusual features provide direction for the development of more complex models of plastid genome evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Fabaceae  Plastid genome  Repeated sequences            Trifolium
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号