首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photoresponse of chlorophyll-containing bileaflet membranes and the effect of phycocyanin as extrinsic membrane protein
Authors:Asher Ilam  Donald S Berns
Institution:(1) Division of Laboratories and Research, New York State Department of Health, 12201 Albany, New York;(2) Present address: Department of Physiology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
Abstract:Summary Artificial bileaflet membranes were formed from extracts of chloroplasts. Gradients of a redox potential were created across the membranes by adding various concentrations of ceric-cerous ions, ferric-ferrous ions, and ascorbic acid to the aqueous solutions on either side of the membrane. When a membrane interposed between solutions of different redox potential was irradiated with light, a potential difference of up to 50 mV was recorded. Analysis of the photoresponse allowed its separation into two components: a photoelectromotive driving force dependent upon the redox potential gradient, and a photoconductive pathway dependent upon the amount of light absorbed by the membranes. There appeared to be a limit to the photocurrent that could be drawn from a membrane at a particular intensity of irradiation; i.e., it did not increase indefinitely with increase of the redox potential gradient. Conductance of the photoconductive pathway was independent of temperature. Phycocyanin added to the aqueous solution participated in the photoresponse in a unidirectional manner that suggested facilitation of electron transport from membrane to acceptors in the aqueous solution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号