首页 | 本学科首页   官方微博 | 高级检索  
     


Short-term pretreatment with low-dose hydrogen peroxide enhances the efficacy of bone marrow cells for therapeutic angiogenesis
Authors:Kubo Masayuki  Li Tao-Sheng  Suzuki Ryo  Ohshima Mako  Qin Shu-Lan  Hamano Kimikazu
Affiliation:Department of Surgery and Clinical Science, Yamaguchi University, Graduate School of Medicine, Yamaguchi, Japan.
Abstract:Therapeutic angiogenesis can be induced by the implantation of bone marrow cells (BMCs). Hydrogen peroxide (H(2)O(2)) has been shown to increase VEGF expression and to be involved in angiogenesis. We tested the hypothesis that pretreatment with H(2)O(2) enhances the efficacy of BMCs for neovascularization. H(2)O(2) pretreatment was done by incubating mouse BMCs in 5 microM H(2)O(2) for 30 min, followed by washing twice with PBS. The H(2)O(2)-pretreated and untreated BMCs were then studied in vitro and in vivo. RT-PCR analysis showed that expression of VEGF and Flk-1 mRNA was significantly higher in H(2)O(2)-pretreated BMCs than in untreated BMCs after 12 and 24 h of culture (P<0.01). Pretreatment with H(2)O(2) also effectively enhanced the VEGF production and endothelial differentiation from BMCs after 1 and 7 days of culture (P<0.05). To estimate the angiogenic potency in vivo, H(2)O(2)-pretreated or untreated BMCs were intramuscularly implanted into the ischemic hindlimbs of mice. After 14 days of treatment, many of the H(2)O(2)-pretreated BMCs were viable, showed endothelial differentiation, and were incorporated in microvessels. Conversely, the survival and incorporation of the untreated BMCs were relatively poor. Microvessel density and blood flow in the ischemic hindlimbs were significantly greater in the mice implanted with H(2)O(2)-pretreated BMCs than in those implanted with untreated BMCs (P<0.05). These results show that the short-term pretreatment of BMCs with low-dose H(2)O(2) is a novel, simple, and feasible method of enhancing their angiogenic potency.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号