Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways |
| |
Authors: | Olah Zoltan Karai Laszlo Iadarola Michael J |
| |
Affiliation: | Neuronal Gene Expression Unit, Pain and Neurosensory Mechanisms Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA. zoltan.olah@nih.gov |
| |
Abstract: | Activation of vanilloid receptor (VR1) by protein kinase C (PKC) was investigated in cells ectopically expressing VR1 and primary cultures of dorsal root ganglion neurons. Submicromolar phorbol 12,13-dibutyrate (PDBu), which stimulates PKC, acutely activated Ca(2+) uptake in VR1-expressing cells at pH 5.5, but not at mildly acidic or neutral pH. PDBu was antagonized by bisindolylmaleimide, a PKC inhibitor, and ruthenium red, a VR1 ionophore blocker, but not capsazepine, a vanilloid antagonist indicating that catalytic activity of PKC is required for PDBu activation of VR1 ion conductance, and is independent of the vanilloid site. Chronic PDBu dramatically down-regulated PKC(alpha) in dorsal root ganglion neurons or the VR1 cell lines, whereas only partially influencing PKCbeta, -delta, -epsilon, and -zeta. Loss of PKC(alpha) correlated with loss of response to acute re-challenge with PDBu. Anandamide, a VR1 agonist in acidic conditions, acts additively with PDBu and remains effective after chronic PKC down-regulation. Thus, two independent VR1 activation pathways can be discriminated: (i) direct ligand binding (anandamide, vanilloids) or (ii) extracellular ligands coupled to PKC by intracellular signaling. Experiments in cell lines co-expressing VR1 with different sets of PKC isozymes showed that acute PDBu-induced activation requires PKC(alpha), but not PKC(epsilon). These studies suggest that PKC(alpha) in sensory neurons may elicit or enhance pain during inflammation or ischemia. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|