首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantitative intercomparison of transmission electron microscopy,flow cytometry,and epifluorescence microscopy for nanometric particle analysis
Authors:Ferris Matthew M  Stoffel Carrie L  Maurer Thain T  Rowlen Kathy L
Institution:Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
Abstract:Nanometric biological particles such as viruses have received increased attention in a wide range of scientific fields. Evaluation of viral contributions to environmental processes and the use of viruses in medical applications such as gene therapy require viruses to be routinely and accurately enumerated. There are a variety of existing techniques for counting viruses, namely, plaque assays, transmission electron microscopy (TEM), epifluorescence microscopy (EFM), and flow cytometry (FCM); each has advantages and disadvantages. While there have been attempts to intercompare some of these techniques to determine the most effective means to count viruses, no previous study used a technique-independent standard for quantitative comparison of collection efficiency, accuracy, and precision. In this work, polystyrene nanospheres were used as standards for the intercomparison of performance characteristics for TEM, EFM, FCM, as well as a custom-built flow cytometer (the Single Nanometric Particle Enumerator, SNaPE). EFM and SNaPE exhibited the highest degree of accuracy and precision, with particle concentrations deviating < or =5% from true and relative errors less than half that of TEM, EFM and SNaPE are also significantly more time and cost efficient than TEM.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号