首页 | 本学科首页   官方微博 | 高级检索  
     


Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy
Authors:Despa Sanda  Kockskämper Jens  Blatter Lothar A  Bers Donald M
Affiliation:Department of Physiology, Loyola University Chicago, Maywood, Illinois, USA.
Abstract:Via the Na/Ca and Na/H exchange, intracellular Na concentration ([Na](i)) is important in regulating cardiac Ca and contractility. Functional data suggest that [Na](i) might be heterogeneous in myocytes that are not in steady state, but little direct spatial information is available. Here we used two-photon microscopy of SBFI to spatially resolve [Na](i) in rat ventricular myocytes. In vivo calibration yielded an apparent K(d) of 27 +/- 2 mM Na. Similar resting [Na](i) was found using two-photon or single-photon ratiometric measurements with SBFI (10.8 +/- 0.7 vs. 11.1 +/- 0.7 mM). To assess longitudinal [Na](i) gradients, Na/K pumps were blocked at one end of the myocyte (locally pipette-applied K-free extracellular solution) and active in the rest of the cell. This led to a marked increase in [Na](i) at sites downstream of the pipette (where Na enters the myocyte and Na/K pumps are blocked). [Na](i) rise was smaller at upstream sites. This resulted in sustained [Na](i) gradients (up to approximately 17 mM/120 microm cell length). This implies that Na diffusion in cardiac myocytes is slow with respect to trans-sarcolemmal Na transport rates, although the mechanisms responsible are unclear. A simple diffusion model indicated that such gradients require a Na diffusion coefficient of 10-12 microm(2)/s, significantly lower than in aqueous solutions.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号