首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Species designation of the Bruneau Dune tiger beetle (Cicindela waynei) is supported by phylogenetic analysis of mitochondrial DNA sequence data
Authors:Caren S Goldberg  David C Tank  Simon Uribe-Convers  William R Bosworth  Hannah E Marx  Lisette P Waits
Institution:(1) Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, USA;(2) Department of Forest, Rangeland, and Fire Sciences & Stillinger Herbarium, University of Idaho, Moscow, ID, USA;(3) Idaho Department of Fish and Game, University of Idaho, Boise, ID, USA
Abstract:Beetles comprise nearly one quarter of described species and show high levels of morphological and ecological diversification. Because of their wide distribution, ease of detection, and correlation of species richness patterns with other taxa, tiger beetles have been recommended for use as a global indicator of regional biodiversity, requiring accurate taxonomic designations. The Bruneau Dune tiger beetle (Cicindela waynei), whose habitat consists of an isolated dune field in southern Idaho, was recently described as a distinct species from the St. Anthony Dunes tiger beetle (C. arenicola) based on morphological characteristics. While these characteristics include distinct differences in genital morphology that could indicate intrinsic reproductive isolation, morphological characteristics have sometimes been misleading in tiger beetle taxonomy. To evaluate genetic support for this species designation, we analyzed 1,751 base pairs of mitochondrial DNA sequence from 147 tiger beetles collected throughout the range of both C. arenicola and C. waynei. Maximum-likelihood and Bayesian phylogenetic analyses indicated monophyly for C. waynei on a well-supported, short branch nested within C. arenicola. Bayesian species delimitation analyses strongly supported C. waynei as a distinct species (speciation probability = 1.0) with the estimated time of divergence ca. 14,500–67,000 years ago. This lack of reciprocal monophyly and recency of speciation is consistent with C. waynei as a member of an evolutionary front where speciation has occurred at a rapid rate. Mitochondrial sequence data supports the species designation of C. waynei, emphasizing the need to determine appropriate management for this species and its restricted habitat.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号