首页 | 本学科首页   官方微博 | 高级检索  
     


Incorporation of N‐amidino‐pyroglutamic acid into peptides using intramolecular cyclization of α‐guanidinoglutaric acid
Authors:Sergey Burov  Yulia Moskalenko  Marina Dorosh  Zoya Shkarubskaya  Evgeny Panarin
Affiliation:Institute of Macromolecular Compounds RAS, 199004, St Petersburg, Russia
Abstract:N‐terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N‐amidino‐amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block—N‐amidino‐pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N‐amidino‐proline using RuO4 did not produce positive results, N‐amidino‐Glp‐Phe‐OH was synthesized on Wang polymer by cyclization of α‐guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N‐amidino‐Glp‐Phe‐OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N‐amidino‐Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.
Keywords:N‐amidino‐pyroglutamic acid  intramolecular cyclization  TMSOTf/TEA deprotection  Wang resin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号