首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane association and selectivity of the antimicrobial peptide NK‐2: a molecular dynamics simulation study
Authors:Jutarat Pimthon  Regine Willumeit  Andreas Lendlein  Dieter Hofmann
Institution:1. Institute of Polymer Research, GKSS Research Center, Kantstr. 55, D‐14513 Teltow, Germany;2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri‐Ayudhya Road, Bangkok 10400, Thailand;3. Institute of Materials Research, GKSS Research Center, Max‐Planck‐Str., D‐21502 Geesthacht, Germany
Abstract:In an effort to better understand the initial mechanism of selectivity and membrane association of the synthetic antimicrobial peptide NK‐2, we have applied molecular dynamics simulation techniques to elucidate the interaction of the peptide with the membrane interfaces. A homogeneous dipalmitoylphosphatidylglycerol (DPPG) and a homogeneous dipalmitoylphosphatidylethanolamine (DPPE) bilayers were taken as model systems for the cytoplasmic bacterial and human erythrocyte membranes, respectively. The results of our simulations on DPPG and DPPE model membranes in the gel phase show that the binding of the peptide, which is considerably stronger for the negatively charged DPPG lipid bilayer than for the zwitterionic DPPE, is mostly governed by electrostatic interactions between negatively charged residues in the membrane and positively charged residues in the peptide. In addition, a characteristic distribution of positively charged residues along the helix facilitates a peptide orientation parallel to the membrane interface. Once the peptides reside close to the membrane surface of DPPG with the more hydrophobic side chains embedded into the membrane interface, the peptide initially disturbs the respective bilayer integrity by a decrease of the order parameter of lipid acyl chain close to the head group region, and by a slightly decrease in bilayer thickness. We found that the peptide retains a high content of helical structure on the zwitterionic membrane‐water interface, while the loss of α‐helicity is observed within a peptide adsorbed onto negatively charged lipid membranes. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.
Keywords:MD simulations  peptide‐lipid interaction  lipid bilayers  electrostatic  anionic  zwitterionic  surface binding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号