首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cover Picture: Proteomics 7/2009
Abstract:In this issue of Proteomics you will find the following highlighted articles: Computing clusters and complexes At first glance, the structure of a cell looks like a semi‐random collection of proteins, lipids and nucleic acids. With the development of high‐throughput tools and bioinformatic procedures, we can begin to see some order in the chaos, including relationships that regulate cell functions (the interactome). Carbonell et al. looked at hubs, hot spots, interfaces, modules, complexes, binding site disorder, affinity and alanine scanning in developing a model for the energetics and specificity of protein‐protein interactions. They observed self‐segregation of binding sites by affinity, i.e. specific‐specific and promiscuous‐ promiscuous interactions between hubs are much higher than random association. Examples of low and high affinity energetics are discussed for cytochrome b, cdc42 GTPase, ubiquitin, and calmodulin‐dependent kinase. Calculated values were selectively validated for a reality check. Carbonell, P. et al., Proteomics 2009, 9, 1744‐1753. Pursuing the Plasmodium plague: understanding malaria through homology Plasmodium falciparum is a difficult organism to work with because of its complex life cycle: ring, trophozoite and schizont phases. From recent genome sequencing work, proteins/open reading frames can be selected by homology to look at possible elements of the plasmodium interactome. Wuchty et al. took on the challenge. Information was derived from reliable interaction experiments with S. cerevisiae, D. melanogaster, C. elegans, and E. coli. Homologies were determined by BlastP (all‐vs.‐all). Shared GO annotations were found which added to further understanding of the sparsely annotated parasite. Other parameters examined included Cluster Participation Coefficient, Kernel Density Function, K‐Clique Clustering, and (drum roll please) the Rich‐Club Coefficient. Using the InParanoid yeast database, they found over 1800 interactions among almost 700 yeast proteins. Pooling the four organisms gave 5000 interactions among 1900 proteins. There should be some interesting targets in there . . . Wuchty, S.et al., Proteomics 2009, 9, 1841‐1849 Race to the finish‐aging nerve vs. aging muscle Our image of a “senior citizen” often has a wobbling gait and sagging face. These are both in part the result of muscle atrophy. A good surgeon and $150 000 will get you the Joan Rivers look that should hold you into your 90's. But what about your legs? Tough luck for now. Capitanio et al., however, are looking at the relationship between muscle and nerve breakdown with age using proteomic tools. Studying the gastrocnemius muscle and the sciatic nerve of young (8 month) and older (22 month) rats, the authors found a number of coordinate morphological and metabolic changes in the deterioration of nerves and their linked muscles. Light and electron microscopy, 2‐D DIGE, ESI‐MS/MS MALDI‐TOF, Western immunoblots and immunocytochemistry were all brought to bear on the question. The results were a much clearer understanding of the mechanics of muscle aging. Capitanio, D. et al., Proteomics 2009, 9, 2004‐2020.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号