首页 | 本学科首页   官方微博 | 高级检索  
     


RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information
Authors:Rakesh Kaundal  Gajendra P. S. Raghava Dr.
Affiliation:1. Bioinformatics Lab, Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA;2. Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, India
Abstract:The attainment of complete map‐based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome‐scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)‐based modules have been developed using traditional amino acid‐, dipeptide‐ (i+1) and four parts‐amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search‐based module has been developed using position‐specific iterated‐basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position‐specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher‐order dipeptide composition, N‐ and C‐terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf‐PSORT, PA‐SUB, Plant‐Ploc and ESLpred. To assist the plant research community, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.
Keywords:Amino acid composition  Position‐specific scoring matrix  PSI‐BLAST  Rice  Subcellular localization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号