Applications of Population Genetics to Animal Breeding,from Wright,Fisher and Lush to Genomic Prediction |
| |
Authors: | William G. Hill |
| |
Affiliation: | Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh EH9 3JT, United Kingdom |
| |
Abstract: | Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives’ performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher’s infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with “genomic selection” is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.THE success of breeders in effecting immense changes in domesticated animals and plants greatly influenced Darwin’s insight into the power of selection and implications to evolution by natural selection. Following the Mendelian rediscovery, attempts were soon made to accommodate within the particulate Mendelian framework the continuous nature of many traits and the observation by Galton (1889) of a linear regression of an individual’s height on that of a relative, with the slope dependent on degree of relationship. A polygenic Mendelian model was first proposed by Yule (1902) (see Provine 1971; Hill 1984). After input from Pearson, Yule again, and Weinberg (who developed the theory a long way but whose work was ignored), its first full exposition in modern terms was by Ronald A. Fisher (1918) (biography by Box 1978). His analysis of variance partitioned the genotypic variance into additive, dominance and epistatic components. Sewall Wright (biography by Provine 1986) had by then developed the path coefficient method and subsequently (Wright 1921) showed how to compute inbreeding and relationship coefficients and their consequent effects on genetic variation of additive traits. His approach to relationship in terms of the correlation of uniting gametes may be less intuitive at the individual locus level than Malécot’s (1948) subsequent treatment in terms of identity by descent, but it transfers directly to the correlation of relatives for quantitative traits with additive effects.From these basic findings, the science of animal breeding was largely developed and expounded by Jay L. Lush (1896–1982) (see also commentaries by Chapman 1987 and Ollivier 2008). He was from a farming family and became interested in genetics as an undergraduate at Kansas State. Although his master’s degree was in genetics, his subsequent Ph.D. at the University of Wisconsin was in animal reproductive physiology. Following 8 years working in animal breeding at the University of Texas he went to Iowa State College (now University) in Ames in 1930. Wright was Lush’s hero: ‘I wish to acknowledge especially my indebtedness to Sewall Wright for many published and unpublished ideas upon which I have drawn, and for his friendly counsel” (Lush 1945, in the preface to his book Animal Breeding Plans). Lush commuted in 1931 to the University of Chicago to audit Sewall Wright’s course in statistical genetics and consult him. Speaking at the Poultry Breeders Roundtable in 1969: he said, “Those were by far the most fruitful 10 weeks I ever had.” (Chapman 1987, quoting A. E. Freeman). Lush was also exposed to and assimilated the work and ideas of R. A. Fisher, who lectured at Iowa State through the summers of 1931 and 1936 at the behest of G. W. Snedecor.Here I review Lush’s contributions and then discuss how animal breeding theory and methods have subsequently evolved. They have been based mainly on statistical methodology, supported to some extent by experiment and population genetic theory. Recently, the development of genomic methods and their integration into classical breeding theory has opened up ways to greatly enhance rates of genetic improvement. Lush focused on livestock improvement and spin-off into other areas was coincidental; but he had contact with corn breeders in Ames and beyond and made contributions to evolutionary biology and human genetics mainly through his developments in theory (e.g., Falconer 1965; Robertson 1966; Lande 1976, 1979; see also Hill and Kirkpatrick 2010). I make no attempt to be comprehensive, not least in choice of citations. |
| |
Keywords: | Drosophila: functional genomics online tools bioinformatics community resources |
|
|