首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ontogenetic tissue modification in Malus fruit peduncles: the role of sclereids
Authors:Melanie Horbens  Alexander Feldner  Monika H?fer  Christoph Neinhuis
Institution:1.Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, D-01217 Dresden, Germany;2.Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, D-01737 Tharandt, Germany;3.Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Pillnitzer Platz 3a, D-01326 Dresden, Germany
Abstract:

Background and Aims

Apple (Malus) fruit peduncles are highly modified stems with limited secondary growth because fruit ripening lasts only one season. They must reliably connect rather heavy fruits to the branch and cope with increasing fruit weight, which induces dynamic stresses under oscillating wind loads. This study focuses on tissue modification of these small, exposed structures during fruit development.

Methods

A combination of microscopic, static and dynamic mechanical tests, as well as Raman spectroscopy, was used to study structure–function relationships in peduncles of one cultivar and 12 wild species, representatively chosen from all sections of the genus Malus. Tissue differentiation and ontogenetic changes in mechanical properties of Malus peduncles were observed throughout one growing season and after successive removal of tissues.

Key Results

Unlike in regular stems, the vascular cambium produces mainly phloem during secondary growth. Hence, in addition to a reduced xylem, all species developed a centrally arranged sclerenchyma ring composed of fibres and brachysclereids. Based on differences in cell-wall thickness, and proportions and arrangement of sclereids, two types of peduncle construction could be distinguished. Fibres provide an increased maximum tensile strength and contribute most to the overall axial rigidity of the peduncles. Sclereids contribute insignificantly to peduncle strength; however, despite being shown to have a lower elastic modulus than fibres, they are the most effective tissue in stiffening peduncles against bending.

Conclusions

The experimental data revealed that sclereids originating from cortical parenchyma act as ‘accessory’ cells to enhance proportions of sclerenchyma during secondary growth in peduncles. The mechanism can be interpreted as an adaptation to continuously increasing fruit loads. Under oscillating longitudinal stresses, sclereids may be regarded as regulating elements between maintenance of stiffness and viscous damping, the latter property being attributed to the cortical parenchyma.
Keywords:Apple  biomechanics  fibres  fruit peduncle  fruit load  functional anatomy  Malus  sclereids  viscous damping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号