首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia
Authors:Gary J Rose  Susan J Call
Institution:(1) Department of Biology, University of Utah, 84112 Salt Lake City, Utah, USA
Abstract:Summary Gymnotiform electric fish sense low-and high frequency electric signals with ampullary and tuberous electroreceptors, respectively. We employed intracellular recording and labeling methods to investigate ampullary and tuberous information processing in laminae 1–5 of the dorsal torus semicircularis of Eigenmannia. Ampullary afferents arborized extensively in laminae 1–3 and, in some cases, lamina 7. Unlike tuberous afferents to the torus, ampullary afferents had numerous varicosities along their finest-diameter branches. Neurons that were primarily ampullary were found in lamina 3. Neurons primarily excited by tuberous stimuli were found in lamina 5 and, more rarely, in lamina 4. Cells that had dendrites in lamina 1–3 and 5 could be recruited by both ampullary and tuberous stimuli. These bimodal cells were found in lamina 4. During courtship, Eigenmannia produces interruptions of its electric organ discharges. These interruptions stimulate ampullary and tuberous receptors. The integration of ampullary and tuberous information may be important in the processing of these communication signals.Abbreviations JAR jamming avoidance response - EOD electric organ discharge - S1 sinusoidal signal mimicking fish's EOD - S2 jamming signal - Df frequency difference (S2-S1) or between a neighbor's EODs and fish's own EODs - CNS central nervous system
Keywords:Electric fish  Eigenmannia  Torus semicircularis  Intracellular  Structure-Function  Laminar  Communication  Ampullary  Tuberous
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号