首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hormonal effects on mitochondrial respiration: potential role of endogenous lipolytic activities
Authors:S Crost  M K Martin  J W Palmer
Institution:1. University of Florida, College of Pharmacy, Gainesville, Florida;2. University of Florida, Health Science Center Libraries, Gainesville, Florida;3. Presbyterian College, School of Pharmacy, Clinton, South Carolina;1. School of Architecture and Built Environment, Deakin University, Geelong 3220, Australia;2. School of Built Environment, University of New South Wales, Sydney 2033, Australia;3. School of Built Environment, University of Technology Sydney, Sydney 2007, Australia
Abstract:Hormonal effects on heart mitochondrial metabolism are investigated by comparing respiratory rates, Ca2+ uptake capacity, and lipolytic activities of mitochondria isolated from control rats to those of mitochondria isolated from thyroparathyroidectomized animals. Two biochemically and morphologically distinct populations of heart mitochondria are prepared--one derived from the region of the cell directly beneath the sarcolemma (subsarcolemmal mitochondria), the other originally between the myofibrils (interfibrillar mitochondria). Subsarcolemmal mitochondria isolated from normal rat cardiac tissue have both lower respiratory rates and Ca2+ uptake capacity than do interfibrillar mitochondria. However, when these mitochondrial populations are isolated from hearts from thyroparathyroidectomized rats, there is a selective increase in the maximal ability of the subsarcolemmal mitochondria to accumulate Ca2+, which is accompanied by a proportionate increase in their maximal respiratory rates. Neither Ca2+ uptake capacity nor respiratory rates are similarly increased in the interfibrillar mitochondria. Cytochrome contents and mitochondrial protein recoveries are not significantly changed in either of these mitochondrial preparations. The relationship between these selective increases in respiratory properties of the subsarcolemmal mitochondria to endogenous lipolytic activities is also investigated. It was previously demonstrated that, in the absence of Ca2+, both the rate and extent of formation of free fatty acids from endogenous phospholipids is greater in subsarcolemmal than interfibrillar mitochondria (J. W. Palmer et al. (1981) Arch. Biochem. Biophys. 211, 674-682). In this study it is shown that lipolysis is also more sustained in the subsarcolemmal mitochondria when Ca2+ is added. In the subsarcolemmal mitochondria isolated from thyroparathyroidectomized rats, however, the rates of release of stearic acid and oleic acid are reduced in both the presence and absence of Ca2+. In the presence of added Ca2+, the rate of release of arachidonic acid is also decreased compared to control subsarcolemmal mitochondria, suggesting that the expressed activity of Ca2+-activated phospholipase A2 is lower in those mitochondria isolated from the thyroparathyroidectomized animals, in which respiratory rates and Ca2+ uptake capacity are increased.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号