首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The inhibition of degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase by sterol regulatory element binding protein cleavage-activating protein requires four phenylalanine residues in span 6 of HMG-CoA reductase transmembrane domain
Authors:Xu Liwen  Simoni Robert D
Institution:Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA. xuliwen4@stanford.edu
Abstract:3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the cholesterol biosynthetic pathway. This endoplasmic reticulum membrane protein contains a cytosolic catalytic domain and a transmembrane domain with eight membrane spans that are necessary for sterol-accelerated degradation. Competition experiments showed that wild-type transmembrane domains of HMGR and sterol regulatory element binding protein cleavage-activating protein (SCAP) blocked sterol-accelerated degradation of intact HMGR and HMGal, a model protein containing the membrane domain of HMGR linked to Escherichia coli beta-galactosidase. However, mutant transmembrane domains of HMGR and SCAP whose sterol-sensing functions were abolished did not inhibit sterol-accelerated degradation of HMGR and HMGal. In addition, our mutagenesis studies on HMGal indicated that four Phe residues conserved in span 6 of HMGR and the sterol-sensing domains of other sterol-related proteins are required for the regulated degradation of HMGR. These results suggest that HMGR and SCAP compete for binding to a sterol-regulated regulator protein, and this binding may need the four Phe residues.
Keywords:HMGR  HMGal  Degradation  Sterol-regulated degradation  SCAP  ER membrane-bound protein
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号