Physicochemical and biological properties of the coffee (Coffea arabica) rhizosphere suppress the root-knot nematode Meloidogyne exigua |
| |
Authors: | Alex Oliveira Botelho Eduardo Souza Freire Renata Silva Canuto de Pinho Aline Ferreira Barros |
| |
Affiliation: | 1. Instituto Federal do Sudeste de Minas Gerais, Barbacena-MG, Brazil;2. Universidade de Rio Verde, Rio Verde-GO, Brazil;3. Universidade Federal do Pampa – Campus Itaqui, Itaqui-RS, Brazil;4. Department of Plant Pathology, Universidade Federal de Lavras, Lavras-MG, Brazil |
| |
Abstract: | ABSTRACTWe investigated the properties of rhizospheric soils infested with root-knot nematode (RKN) Meloidogyne exigua in 17 coffee (Coffea arabica) farms from the Southern region of Minas Gerais, Brazil. Physicochemical (pH, clay and organic matter) and biological properties (RKN parasites and microbiota volatile toxicity on M. exigua) were correlated with the number of second-stage juveniles (J2) and the egg hatching of M. exigua extracted from those rhizospheres. In the five most suppressive farms, the number of J2 was less than 50/100?g of soil and the egg hatching was significantly low. The bacterium Pasteuria penetrans was found in four of the most suppressive farms with an average of 30% of J2 infected with endospores. By using in vitro experiments the microbiota volatiles emitted from the most suppressive soils killed more than 83% of the J2. Additionally, volatiles produced by Fusarium oxysporum, Cladosporium sp. and Syncephalastrum sp. isolated from M. exigua eggs, significantly killed the J2. Identification of nematicidal compounds from the soils by GC-MS supported the strong involvement of the microbiota volatile toward RKN suppressiveness. Clay percentage and pH were similar in farms with the most suppressive soils (42.5% and 6.6%, respectively). Finally, the most suppressive soils came from farms with the highest coffee bean yields. Collectively, these results suggest the strong involvement of parasitic microorganisms, clay percentage and the pH suppressing RKN in soils from the major coffee production region in Brazil, and that volatiles emitted from total microbiota and exclusively from egg-isolated fungi are toxic to M. exigua. |
| |
Keywords: | Plant-parasitic nematodes biological control biotic soil activity abiotic soil activity antagonist microbiota nematicidal compounds |
|
|