首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-type inactivation of the potassium channel KcsA by the Shaker B "ball" peptide: mapping the inactivating peptide-binding epitope
Authors:Molina M Luisa  Barrera Francisco N  Encinar José A  Renart M Lourdes  Fernández Asia M  Poveda José A  Santoro Jorge  Bruix Marta  Gavilanes Francisco  Fernández-Ballester Gregorio  Neira José L  González-Ros José M
Institution:Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain.
Abstract:The effects of the inactivating peptide from the eukaryotic Shaker BK(+) channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr(8), which exhibit the strongest STD effects; the C4H in the imidazole ring of His(16); the methyl protons of Val(4), Leu(7), and Leu(10) and the side chain amine protons of one, if not both, the Lys(18) and Lys(19) residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val(4) and Leu(10), whereas His(16) seems similarly affected as before. Conversely, STD effects on Tyr(8) are strongly diminished, and those on Lys(18) and/or Lys(19) are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of (13)C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a beta-hairpin structure when bound to the KcsA channel. Indeed, docking such a beta-hairpin structure into an open pore model for K(+) channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号