首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Activity of Rat Pineal and Brain Tyrosine Hydroxylase During the Daily Cycle of Light and Darkness as Determined by the Modified 14CO2 Assay Method
Authors:Shuzo Watanabe  Michio Tom  Arata Ichiyama  Tohru Kataoka
Institution:Division of Psychobiology, National Center for Nervous, Mental and Muscular Disorders, Kodaira-shi, Tokyo, Jupun;Department of Biochemistry, Hamamatsu University School of Medicine, Hunda-cho, Hamamstsu, Japan;Department of Physiological Chemistry and Nutrition, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
Abstract:A previous published assay method for tyrosine hydroxylase by the evolution of 14CO2 was modified to a two-step procedure to allow reliable measurement of large numbers of samples containing low tyrosine hydroxylase activity. The reliability of the method was examined in detail. Properties of rat brain and pineal tyrosine hydroxylase solubilized with 0.2% Triton X-100 were as follows. The apparent Km values of the brain enzyme for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-L-erythro-biopterin (BPH4) as cofactor and for BPH4 with 62 microM-L-tyrosine as substrate were approximately 25 microM and 85 microM, respectively. The Km's for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-6-methylpterin (6MPH4) as cofactor and for 6MPH4 with 210 microM-L-tyrosine as substrate were 68 microM and 270 microM, respectively. The marked substrate inhibition by high concentrations of L-tyrosine was observed only when BPH4 was used as cofactor. High concentrations of BPH4 inhibited the reaction slightly. The kinetic properties of tyrosine hydroxylase in the pineal extract were similar to those of the brain enzyme, except that a Lineweaver-Burk plot of reciprocal velocity versus the reciprocal concentration of BPH4 with 62 microM-L-tyrosine as substrate deviated downward at a BPH4 concentration of about 100 microM. Analyses of the plot indicated that the peculiar kinetic property may represent either the reaction occurring at two independent sites or with two forms (6L- and 6D-isomers) of the tetrahydrobiopterin cofactor, with apparent Km for BPH4 of 23 microM and 1025 microM, respectively, or the negatively cooperative ligand binding with a Hill coefficient of 0.72. Based on the results obtained as reported above the standard assay conditions of tyrosine hydroxylase in tissue extracts were established. Using the assay method and conditions, the absence of the daily rhythmicity of tyrosine hydroxylase in rat pineal glands and three discrete brain areas was demonstrated. The findings, especially on pineal tyrosine hydroxylase, are discussed in relation to the daily change of noradrenaline turnover.
Keywords:Tyrosine hydroxylase  Pineal gland  Daily rhythm  Assay methods  Noradrenaline  Tetrahydrobiopterin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号