首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase.
Authors:P Suter  J P Rosenbusch
Abstract:The allosteric effectors of aspartate transcarbamoylase from Escherichia coli, CTP and ATP, associate with both the regulatory and the catalytic moieties of the enzyme. Studies with isolated, active subunits yield one binding site per regulatory dimer and one per catalytic trimer. Investigations of effector association with hybrid enzymes, containing either the three regulatory dimers or the two catalytic trimers in inactivated forms, indicate that the data obtained with isolated subunits can be used to analyze the binding patterns of these ligands to the native hexamer. Thus, the nonlinear Scatchard plots, characteristic of the binding of CTP and ATP to the native enzyme, can be interpreted in terms of three effector molecules associating with the regulatory subunits, and two binding to the catalytic moiety of the enzyme. Results with native protein in the presence of saturating concentrations of active site ligands support these assignments. The differences between the binding isotherms of CTP and ATP to the enzyme are due to their different affinities to the two types of subunits. The apparent half-of-the-site saturation of the regulatory moiety of aspartate transcarbamoylase supports the concept that this protein has a tendency to exist in an asymmetric state.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号