首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of auxin-binding proteins from zucchini plasma membrane
Authors:Glenn R Hicks  Margaret S Rice  Terri L Lomax
Institution:(1) Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, 97331-2902 Corvallis, OR, USA;(2) Present address: MSU-DOE Plant Research Laboratory, Michigan State University, 48824-1312 East Lansing, MI, USA
Abstract:We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948–4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or mutimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.Abbreviations HPLC high-pressure liquid chromatography - IAA indole-3-acetic acid - azido-IAA 5-N3-7-3H-IAA - pI isoelectric point - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank R. Hopkins and I. Gelford for excellent technical work and our colleagues, especially T. Wolpert and D.L. Rayle, for many helpful discussions. This work was supported by grants to T.L.L. from National Science Foundation (DCB 8904114), National Aeronautics and Space Administration (NAGW 1253) and by a grant to D.L. Rayle and T.L.L. from U.S. Department of Agriculture (90-37261-5779). G.R.H. is supported by a National Aeronautics and Space Administration Predoctoral Fellowship (NGT 50455).
Keywords:Auxin  Azido-indole-3-acetic acid  Cucurbita (auxin-binding protein)  Plasma membrane  Protein (auxin-binding)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号