首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation
Authors:Molinari Florence  Foulquier François  Tarpey Patrick S  Morelle Willy  Boissel Sarah  Teague Jon  Edkins Sarah  Futreal P Andrew  Stratton Michael R  Turner Gillian  Matthijs Gert  Gecz Jozef  Munnich Arnold  Colleaux Laurence
Institution:1 Laboratoire de Génétique et Epigénétique des Maladies Métaboliques, Neurosensorielles et du Développement (INSERM U781), Université Paris Descartes, Hôpital Necker-Enfants Malades, F-75015 Paris, France
2 Laboratory for Molecular Diagnostics, Center for Human Genetics, University of Leuven, 3000 B-Leuven, Belgium
3 Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, IFR 147, Université des Sciences et Technologies de Lille 1, F-59655 Villeneuve d'Ascq, France
4 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge, UK
5 The Gold Service, Hunter Genetics and University of Newcastle, New South Wales, NSW 2308, Australia
6 Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, SA 5005, Australia
7 Department of Pediatrics and School of Molecular & Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
Abstract:Mental retardation (MR) is the most frequent handicap among children and young adults. Although a large proportion of X-linked MR genes have been identified, only four genes responsible for autosomal-recessive nonsyndromic MR (AR-NSMR) have been described so far. Here, we report on two genes involved in autosomal-recessive and X-linked NSMR. First, autozygosity mapping in two sibs born to first-cousin French parents led to the identification of a region on 8p22-p23.1. This interval encompasses the gene N33/TUSC3 encoding one subunit of the oligosaccharyltransferase (OTase) complex, which catalyzes the transfer of an oligosaccharide chain on nascent proteins, the key step of N-glycosylation. Sequencing N33/TUSC3 identified a 1 bp insertion, c.787_788insC, resulting in a premature stop codon, p.N263fsX300, and leading to mRNA decay. Surprisingly, glycosylation analyses of patient fibroblasts showed normal N-glycan synthesis and transfer, suggesting that normal N-glycosylation observed in patient fibroblasts may be due to functional compensation. Subsequently, screening of the X-linked N33/TUSC3 paralog, the IAP gene, identified a missense mutation (c.932T-->G, p.V311G) in a family with X-linked NSMR. Recent studies of fucosylation and polysialic-acid modification of neuronal cell-adhesion glycoproteins have shown the critical role of glycosylation in synaptic plasticity. However, our data provide the first demonstration that a defect in N-glycosylation can result in NSMR. Together, our results demonstrate that fine regulation of OTase activity is essential for normal cognitive-function development, providing therefore further insights to understand the pathophysiological bases of MR.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号