首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Implications of the progressive self-association of wild-type human factor H for complement regulation and disease
Authors:Nan Ruodan  Gor Jayesh  Perkins Stephen J
Institution:Department of Biochemistry and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
Abstract:Factor H (FH) is a major regulator of complement alternative pathway activation. It is composed of 20 short complement regulator (SCR) domains and is genetically associated as a risk factor for age-related macular degeneration. Previous studies on FH suggested that it existed in monomeric and dimeric forms. Improved X-ray scattering and analytical ultracentrifugation methodology for wild-type FH permitted a clarification of these oligomeric properties. Data at lower concentrations revealed a dependence of the X-ray radius of gyration values on concentration that corresponded to the weak self-association of FH. Global sedimentation equilibrium fits indicated that a monomer-dimer equilibrium best described the data up to 1.3 mg/ml with a fitted dissociation constant KD of 28 μM and that higher oligomers formed at increased concentrations. The KD showed that about 85-95% of serum FH will be monomeric in the absence of other factors. Size-distribution analyses in sedimentation velocity experiments showed that monomeric FH was the major species but that as many as six oligomeric forms co-existed with it. The data were explained in terms of two weak dimerisation sites recently identified in the SCR-6/8 and SCR-16/20 fragments of FH with similar KD values. These observations indicate a mechanism for the progressive self-association of FH and may be relevant for complement regulation and the formation of drusen deposits that are associated with age-related macular degeneration.
Keywords:FH  factor H  SCR  short complement regulator  RG  radius of gyration  AMD  age-related macular degeneration  aHUS  atypical haemolytic uraemic syndrome
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号