首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism
Authors:Patricio Esteves  Isabelle Clermont  Suzanne Marchand  François Belzile
Institution:1. Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation, Pavillon Paul-Comtois, Université Laval, 2425, rue de l’Agriculture, Local 3236, Québec, QC, G1V 0A6, Canada
Abstract:

Key message

Two alternative cytokinins, thidiazuron and meta-topoline, were tested in isolated microspore culture on recalcitrant barley genotypes (six-row, spring), and green plant regeneration was improved substantially.

Abstract

Doubled-haploid (DH) plants are coveted in plant breeding and in genetic studies, since they are rapidly obtained and perfectly homozygous. In barley, DHs are produced mainly via androgenesis, and isolated microspore culture (IMC) constitutes the method offering the greatest potential efficiency. However, IMC can often be challenging in some genotypes because of low yield of microspores, low regeneration and high incidence of albinism. Six-row spring-type barleys, the predominant type grown in Eastern Canada, are considered recalcitrant in this regard. Our general objective was to optimize an IMC protocol for DH production in six-row spring barley. In particular, we explored the use of alternative hormones in the induction medium (thidiazuron and dicamba), and in the regeneration medium (meta-topoline). This optimization was performed on two typical six-row spring (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) barley cultivar. When 6-benzyl-aminopurine (BAP) was replaced by a combination of thidiazuron and dicamba in the induction medium, a 5.1-fold increase (P < 0.01) in the production of green plants resulted. This increase was mainly achieved by a reduction of albinism. Moreover, a 2.9-fold increase (P < 0.01) in embryo differentiation into green plants was obtained using meta-topoline instead of BAP in the regeneration medium. Together, these innovations allowed us to achieve a substantial improvement in the efficiency of IMC in this recalcitrant type of barley. These results were later successfully validated using sets of F1s from a six-row spring barley breeding program.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号