首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms for shaping,orienting, positioning and patterning plant secondary cell walls
Authors:Edouard Pesquet  Andrey V Korolev  Grant Calder  Clive W Lloyd
Institution:1.John Innes Centre; Norwich Research Park; Norwich, UK;2.Department of Plant Physiology; Umeå Plant Science Centre; Umeå University; Umeå, Sweden
Abstract:Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that—as for the growth of all plant organs—are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls.Key words: xylem/wood vessels, tracheary elements, secondary cell wall, cell wall patterning, microtubules, microtubule-associated proteins, MAP70Xylem formation has been one of the key steps of plant evolution. These physically strong tube cells allowed plants to colonize land by reinforcing their upright position against gravity and resisting desiccation by permitting water conduction throughout the plant body. This double role is fulfilled by specific conducting wood cells—the tracheary elements (TEs). These cells represent the cellular units of the adjustable plant vasculature, which relies on the three structural characteristics of TEs: (1) these cells develop a secondary cell wall to resist pressure exerted by the sap they will conducted, (2) these cells undergo programmed cell death (PCD) to hollow out their entire cytoplasmic content to form a conduit for the sap and (3) these cells will undergo a terminal perforation at their basal end (with respect to the corresponding meristem) to form a complete functional vascular cylinder which will connect with the underlying vascular vessels once terminally differentiated.1,2 TEs are further characterized by a diversity of organizational pattern described by their secondary cell wall, which can be annular or spiral (referred to as protoxylem-type ornamentations) reticulate or pitted (referred to as metaxylem-type ornamentations).3,4 These differently ornamented TEs are developmentally regulated and for protoxylemtype TEs appear during the development of early primary tissues (annular TEs are mostly observed in developing embryos) while metaxylem-type TEs appear in the later development of primary and secondary tissues (they represent the TEs present in wood). Annular and spiral TEs are first formed in organs undergoing primary growth and are considered to be “extendable” (their pattern in rings and spirals does not oppose further extension of the TE cell) during the growth of this organ. Once the growing organ has attained a certain size these TEs will be crushed by the surrounding tissue whilst the more heavily reinforced reticulate and pitted TEs will form to insure the vascular flow and strengthen the entire organ. In short, the modularity and plasticity of this plant vascular system is directly dependant on the differentiation and the type of cell wall ornamentation of its constituent TEs. The establishment of such regular patterning of secondary cell walls has been attributed to the underlying cortical microtubule array that predefines the cell wall depositions (reviewed in ref. 2). Pharmacological modulation of microtubule properties in both whole plants and in vitro TE differentiating systems leads to severe defects in the patterning, orientation, smoothness and deposition of TE secondary cell walls (reviewed in ref. 2).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号