首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic Theory Model for Ion Movement through Biological Membranes: I. Field-Dependent Conductances in the Presence of Solution Symmetry
Authors:Michael C Mackey
Abstract:A model for ion movement through specialized sites in the plasma membrane is presented and analyzed using techniques from nonequilibrium kinetic theory. It is assumed that ions traversing these specialized regions interact with membrane molecules through central conservative forces. The membrane molecules are approximated as massive spherical scattering centers so that ionic fractional energy losses per collision are much less than one. Equations for steady-state membrane ionic currents and conductances as functions of externally applied electric field strength are derived and numerically analyzed, under the restriction of identical solutions on each size of the membrane and constant electric fields within the membrane. The analysis is carried through for a number of idealized ion-membrane molecule central force interactions. For any interaction leading to a velocity-dependent ion-membrane molecule collision frequency, the membrane chord conductance is a function of the externally applied electric field. Interactions leading to a collision frequency that is an increasing (decreasing) function of ionic velocity are characterized by chord conductances that are decreasing (increasing) functions of field strength. For ion-neutral molecule interactions, the conductance is such a rapidly decreasing function of field strength that the slope conductance becomes negative for all field strengths above a certain value.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号