首页 | 本学科首页   官方微博 | 高级检索  
     


Increased Tolerance to Mn Deficiency in Transgenic Tobacco Overproducing Superoxide Dismutase
Authors:YU, Q.   OSBORNE, L. D.   RENGEL, Z.
Affiliation:Soil Science and Plant Nutrition, Faculty of Agriculture, The University of Western Australia, Nedlands, WA, 6907, Australia
Abstract:The effect of Mn deficiency on plant growth and activities ofsuperoxide dismutase (SOD) was studied in hydroponically-grownseedlings of transgenic tobacco (Nicotiana tabacum L.) engineeredto overexpress FeSOD in chloroplasts or MnSOD in chloroplastsor mitochondria. In comparison to the non-transgenic parentalline, the activity of MnSOD in the lines overproducing MnSODwas 1.6-fold greater, and the activity of FeSOD in the FeSOD-overproducinglines was 3.2-fold greater, regardless of the Mn treatment (deficientor sufficient). The MnSOD activities decreased due to Mn deficiency,while activities of FeSOD and Cu/ZnSOD remained unaffected 25d after transplanting (DAT). With an increased duration of theMn deficiency stress (45 DAT), FeSOD activity decreased, andthat of MnSOD continued to decrease, while Cu/ZnSOD activitysimultaneously increased. Under Mn sufficiency, non-transgenicparental plants had greater shoot biomass than the transgenics;however, when subjected to Mn deficiency stress, non-transgenicparents suffered a proportionally greater growth reduction thantransgenic lines. Thus, overproduction of MnSOD in chloroplastsmay provide protection from oxidative stress caused by Mn deficiency.Copyright 1999 Annals of Botany Company Manganese deficiency, Nicotiana tabacum, superoxide dismutase (SOD), transgenic tobacco.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号